STUDIES ON THE ALKALOIDS OF PACHYSANDRA TERMINALIS SIEB. ET ZUCC. (7)⁽¹⁾. : STRUCTURE OF PACHYSANTERMINE-A, A NOVEL INTRAMOLECULAR ESTER ALKALOID.

Tohru Kikuchi and Shoichiro Uyeo Faculty of Pharmaceutical Sciences, Kyoto University

Sakyo-ku, Kyoto, Japan

(Received 4 August 1965)

Pachysantermine - A, a minor alkaloid from the strong base fraction of Pachysandra terminalis SIEB. et ZUCC., was first reported as base XV in Part (3) of this series ⁽²⁾. As will be clear in the sequel, it represents a novel type of pregnane alkaloid carrying a seven-membered ring ester.

Pachysantermine - A (Ia), $C_{29}H_{48}O_2N_2^{(3)}$ (molecular ion peak at m/e 456 in the mass spectrum⁽⁴⁾), m.p. 260 - 263°⁽⁵⁾, $[\alpha]_D^+ 43°^{(6)}$, showed IR $\nu \frac{\text{CHCl}}{\text{max}}$ 3 1710 cm⁻¹ (conjugated ester) and UV $\lambda \frac{\text{EtOH}}{\text{max}}$ ca. 210 m μ (ϵ 10,000) and NMR signals at 5.70 (IH, t., J 3 c.p.s., -CHOCOR-), 6.48 (2H, m., NH-CH₂-C=C-), 7.85 (6H, N(CH₃)₂, 8.18, 8.31 (6H, (CH₃)₂C=C), 8.96, 9.35 (6H, two tert. CH₃), and 9.15 τ (3H, d., J 6 c.p.s.; sec. CH₃).⁽⁷⁾. Its ORD in methanol demonstrated a positive plane curve in the range of 300 - 700 m μ , suggesting that no carbonyl group is contained in the skeletal ring system.

3487

Treatment of pachysantermine - A (Ia) with HCHO - HCOOH gave an N-methyl compound (Ib), $C_{30}H_{50}O_2N_2$, m.p. 258 - 261°, NMR signals: 7.62 (3H, NCH₃) and 7.85 τ (6H, N(CH₃)₂).

VI

Upon hydrogenation of Ia over PtO_2 in AcOH - MeOH, there was obtained a dihydro compound (IIa), $C_{29}H_{50}O_2N_2$, m.p. 225 - 260°, $[\alpha]_D$ + 30° (in methanol), $IR_{\nu} \frac{CHCl}{max}$ 3 1720 cm⁻¹ (saturated ester), which on Nmethylation gave rise to an N-methyl-dihydro compound (IIb), m.p. 230 -235°. Their NMR spectra were characterized by the disappearance of two allylic hydrogens (N-CH₂-C=C) and two allylic methyl signals and the appearance of new signals attributable to (CH₃)₂CH- grouping (6H, 9.03 τ , d., J 7 c.p.s.).

Although Ia was not affected with NaBH₄, it was reduced with LiAlH₄ to give a diol (III), $C_{29}H_{52}O_2N_2$, m.p. 222 - 223°, $[\alpha]_D$ +11°, whose NMR spectrum revealed the presence of a sec. alkohol (-CHOH-, 6.27 τ) and a prim. alkohol group (C=C-CH₂OH, s., 5.73 τ) in the molecule.

From these observations stated above, pachysantermine - A was believed to have a conjugated intramolecular ester grouping.

Base treatment of IIb led to an amino-acid, IR $\nu \frac{\text{CHCl}_3}{\text{max}}$ 1590 cm⁻¹, which on subsequent methylation with diazomethane afforded a methyl ester (IV). This compound demonstrated ester bands at 1730 and 1165 cm⁻¹ in its IR spectrum (CHCl₃), which is almost superimposable with that of IV obtained from pachystermine - A (VI).⁽¹⁾

Upon reduction with LiAlH₄, the above methyl ester (IV) gave a diol (V), m.p. 170 - 172°, $[\alpha]_{D}$ + 36°. This was found to be identical by direct comparison (IR in KBr and mixed melting point) with the 3'-iso-

diol compound V derived from pachystermine - A (VI).⁽¹⁾

On the basis of chemical evidences so far presented, the structure of pachysantermine - A could be represented by the formula Ia.

<u>ACKNOWLEDGEMENT</u> The authors express their deep gratitude to Prof. M. Tomita of this Faculty for his guidance and hearty encouragement.

REFERENCES

- 1. Part (6). T. Kikuchi and S. Uyeo, <u>Tetrahedron Letters</u>, in press.
- T. Kikuchi, S. Uyeo, M. Ando, and A. Yamamoto, <u>Tetrahedron</u> <u>Letters</u>, 1817 (1964).
- All the compounds with cited empirical formulas gave satisfactory elemental analyses.
- Mass spectra were taken on a Hitachi Mass Spectrometer Model RMU-6D, using an all-glass inlet system.
- 5. All the melting points are uncorrected.
- Optical rotations reported in this communication were measured in chloroform solutions at 10 - 30°C, unless otherwise specified.
- 7. All NMR spectra were taken in deuterated chloroform and chemical shifts are reported in τ values, using tetramethylsilane as the internal reference.